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ABSTRACT

Conditions are given under which optimal variatiomal
wave functions will satisfy time-dependent hypervirial

theorems, Hellmann-Feynman theorems, etc.
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Let %& and &» be optimal time dependent variation wave
functions appropriate to the Hamiltonians Hx and Hy respectively.

@k and a?} thus satisfy the variational equations1

(6 §>x> (Hy ) };_B_t) g’x } =0 (la)
( (He- K2 B, 8%) =D (1b)
(6y, (y- T3y =0 oo

( CHy-3t 5%) &y, $%3) =0 (2b)

Let us suppose that

6%, = 1F &y (3

with 1' a small parameter, is a possible variation of .§x

From (1b) this then implies

((he— 52) B F By) =p @)



Similarly if

5‘§}: ‘LF+ Ex (5)

with F the Hermitian conjugates of F , is a possible variation

of &} then (2a) implies

. . ®)
(BT &, (-2 ) 8) = (B, FOy 62 ),)=0

Subtracting (6) from (4) and using the Hermitian property

of HX we then have

(3, , - P ) 6 (%2, 03 e (3£

(Br, (e~ Fiy> By) + 4 ét (3, F &) -0 (3, & ,)=p

or finally

3—-‘:(&;,? §’:ﬂ = ( &x) %‘F '§3\3> + % (&,)C\}“F»Fﬂa)&;) )
t



For H£§ Hy (7) might well be called a time-dependent (off-
diagonal if §7( # @5_) hypervirial theorem while for F = 1,
(7) becomes the time-dependent integral Hellmann-Feynman theorem
of Hayes and Parrz, though now for optimal variational functionms.

Now let us suppose that

S ky- ‘(3’}} (&)
™

real
| with A a/parameter, is a possible variation of §§ . Then

from (la) we have

B - 2)&% )
( 3 Bx— 2 )t:)Q‘ o
while from (1b) we have
(e 2% 2) &, 3,—0% ) =0 (10)
Also let us suppose that
5%y= “L.&x

is a possible variation of Q§x so that from (la) we have

( & (w- z't\gc)ﬁ,,) =5 (11)



Consider now

9 _
208,48 = (B0 B) + (B3, “(Bp3k) an

Using (9) and (10) one readily finds that the last two terms

on the right hand side can be written as

4,1\( }E’r R NS Y
dt > 35 PR

while from (11), the left hand side of (12) can be written as
i 2y, z@)_ 1,’1;('b§’x ,a®>m<§> >3
2o

Putting all this together then, (12) can be written

. 5 3,
W (8, B8 ) (B 2) (3,25,

LR

or

fl ( ?ﬁ;! = *
. B, ( Py, 2_“;; @x> (13)



which is the time-dependent differential Hellmann-Feynman theorem

2 . s
of Hayes and Parr , though now for optimal variational functionms.
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